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Many efforts have been presented in the literature for wind power forecasting in power 
systems and few of them have been used for autonomous power systems. In addition, some 
recent studies have evaluated the impact on the operation of power systems and energy 
markets that the improvement of wind power forecasting can have. In this paper, the value 
of the information provided to the operators of autonomous power systems about fore-
casting errors is studied. This information may vary significantly, e.g. it can be only the 
normalized mean absolute error of the forecast, or a probability density function of 
the errors for various levels of forecasted wind power, which can be provided either during 
the evaluation phase of the wind power forecasting tool or by online uncertainty estima-
tors. This paper studies the impact of the level of detail provided about wind power fore-
casting accuracy for various levels of load and wind power production. The proposed 
analysis, when applied to the autonomous power system of Crete, shows significant 
changes among the various levels of information provided, not only in the operating cost 
but also in the wind power curtailment. Copyright © 2008 John Wiley & Sons, Ltd.
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Introduction
Many efforts have been presented in the technical literature for wind power forecasting (wpf) in power 
systems,1–7 but few of them have been used for autonomous power systems.7,8 Recent studies9–14 have shown 
that improving wpf has signifi cant economic savings for both utilities and the wind park owners participating 
in the energy market. The impact of different forecasting errors for different utilities and wind power produc-
tion levels has been studied, and the presented results show that the economic benefi ts for utilities are increased 
as forecasting accuracy is increased, and even for low wind power production, this can be signifi cant.10 A 
review of studies on the impact of wind power integration in some US utilities has indicated the signifi cance 
of wind power forecasting in reducing the imbalance costs and the spinning reserve requirements.11 For 
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example, in December 2000, Southern California Edison saved $2 million in imbalance costs by improving 
its wpf.12 A similar study deals with the importance of short-term wind power prediction in the participation 
of wind power in electricity markets in Spain13 and other European countries.14

Signifi cant progress has been also made in the uncertainty assessment of wind power forecasts and their 
application in wind power integration in electricity markets,15 using meteorological ensembles,16,17 physical 
considerations18 or statistical methods.3,19–21 As an example, local quantile regression has been applied to opti-
mize the income of a wind power producer by identifying which quantile of the probability distribution for 
wind power production should be used when bidding in the open market,22 also stressing how the prediction 
uncertainty estimation can help in minimizing imbalance costs. The re-sampling method23 has been also used 
to make uncertainty estimation and to identify the confi dence intervals of a wpf tool.

Effective wind power forecasting is very important for the secure and economic operation of autonomous 
power systems with increased wind power penetration. In such systems, because of the lack of interconnection 
to other power systems, spinning reserve requirements are increased to account for the uncertainties in load 
and wind power predictions or contingencies. This leads to excessive spinning reserve and increase of operat-
ing costs. Moreover, such power systems present low minimum-to-maximum demand ratio and signifi cantly 
larger frequency deviations compared with interconnected power systems. The technical minima of the 
installed thermal units often impose limitations in wind power integration, imposing wind power curtailment 
in order to avoid technical limits violations. The higher the uncertainty in the estimation of load and wind, the 
higher the expected wind power curtailment, especially in power systems with slow response units. Advanced 
control software tools, like MORE CARE,8 have been developed to aid island system operators by incorporat-
ing load and renewable energy sources forecasting functions,7 unit commitment, economic dispatch (ED) and 
online dynamic security assessment modules.

Taking into account the special features of autonomous power systems, it would be highly desirable to have 
a methodology to quantify the expected forecasting errors and to use the information provided by the forecast-
ing tools more effi ciently.

In this paper, the value of the information on wind power forecasting errors, to account for the uncertainty 
in wind power forecasting, is studied. Such information can be derived from the results of an off-line evalua-
tion or from the suppliers of the forecasting tool, e.g. confi dence interval and uncertainty estimators. A meth-
odology for exploiting information as little as normalized mean absolute error (NMAE) to a probability density 
function (pdf) of the wpf error for various levels of forecasted wind power, combined with the load forecast-
ing error, is described. According to this methodology, using the calculated percentiles, the operators can derive 
confi dence intervals for the uncertainty of the equivalent load to be dispatched to the thermal units. This is 
taken into account for the spinning reserve and wind power curtailment calculations. The method is applied 
to the typical autonomous power system of Crete using an actual load and wind power data and their forecasts. 
The obtained results are presented and discussed and conclusions are drawn.

Proposed Methodology
The load expected to be dispatched to the thermal units is load(t)–WP(t), where load(t) is the output of the 
load forecasting tool and WP(t) is the output of the wpf tool. The uncertainty in the load to be dispatched to 
the thermal units at each time interval, t, namely lwe(t), comes from load and wind power forecasting error, 
le(t) and we(t), respectively.

 lw t l t w te e e( ) = ( ) − ( )  (1)

The following three steps are followed:

• Convolution of the forecasting errors probability density functions.
• Derivation of confi dence intervals in q and p percentiles for the convolution results.
• Economic scheduling.

It is assumed that both forecasting errors are statistically independent random variables11 and thus the prob-
ability density functions of le(t) and we(t) can be convoluted to produce the lwe(t) probability density function. 
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Having calculated the lwe(t) pdf, confi dence intervals for the expected uncertainty of the load to be distributed 
to the thermal units can be derived, expressed as the interval between p and q percentiles.

The q percentile, perc[q, lwe(t)], of the cumulative distribution function (cdf), Flwe(t)[lwe(t)], of the lwe(t) pdf 
is the solution of the following equation:

 F lw t qlwe t( ) ( ) =[ ]e  (2)

The solution of equation (2) depends on the pdf that is derived according to the available information, as 
presented next. According to the desired confi dence interval, the economic scheduling functions identify which 
units operate, their production and if there is any need for wind power curtailment.

Normalized prediction errors have been considered in this paper for both load and wind power forecasting, 
as described in equation (3). Thus, the errors take into account any loading or installed wind power capacity 
of the power system under study. In equation (3), Pf  stands for the forecasted value, Pa for the actual value 
and Pi stands for the reference value. For the case of load forecasting, the reference value is the installed wind 
power capacity. Negative values of er mean overestimation of the actual value, whereas positive values mean 
underestimation.
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Any prediction error, as shown in equation (4), can be decomposed into a systematic error me, i.e. the bias 
and a random error xe, considered here as a zero mean random variable.

 er e e= +µ ξ  (4)

The suppliers of load and wind power forecasting tools provide end-users with information at least about 
the NMAE as described in equation (5):24

 NMAE
pds

e
i
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= ⋅
=
∑1

1
r  (5)

where pds states the number of considered evaluation periods.
The NMAE index provides very little information about the forecasting errors. Even if two wind power 

forecasting tools present the same NMAE, the one may more often overestimate the wind power, whereas the 
other may more often underestimate it.

Statistical analysis of the error er provided by equation (4) increases the available information to the opera-
tors of a power system, as discussed next. Table I presents the possible levels of available information about 
wpf error.

In Case 1, considered as the base case, only NMAE is known. Symmetrical and unbiased forecasting errors 
are assumed meaning me = 0, and xe is represented by Normal pdf as shown in Figure 1.

Case 2 assumes that, in addition to NMAE, the percentage of underestimation and overestimation errors is 
known. In the following, a mathematical description of the combination of the information about frequency 

Table I. Cases of available information on wind power forecasting errors

Case Available information

1 Only NMAE is known, 50% overestimation and 50% underestimation error is assumed as well as Gaussian 
distribution of errors

2 Occurrence of overestimation and underestimation error in addition to NMAE
3 Distribution of wpf errors
4 Distribution of wpf error grouped for various wind power forecasting outputs
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of overestimation errors with the normalized bias (NBIAS) of the forecasting errors is provided. Derivation 
of the lwe(t) pdf is common for Cases 1 and 2, based on convolution techniques for Normal pdfs.

For Cases 3 and 4, a discrete pdf of the wpf errors is available. In Case 4, this pdf is different for high or 
low wind power forecasted. This consideration is accordance with the recent progress in wpf tools that can 
provide with uncertainty estimates given by probabilistic forecasts.2,3,7,15,22,23,25

Calculating Forecasting Error Parameters when NMAE and Frequency of Underestimation and 
Overestimation Errors are Known
The NMAE of a forecasting error er is mathematically equivalent to the expected value of er. The random 
error in equation (4), xe, is assumed to follow a Normal pdf N(xe, 0, s) with zero mean value and standard 
deviation s. Based on this assumption it is proven26 that er, which is a linear function of xe, follows N(xe, 0, 
s). In equations (7) and (8), the parameters a and b denote the frequency of overestimation and underestima-
tion forecasting errors, respectively:

 e N e de NMAEr r e r
−∞

∞

∫ ⋅ ( )⋅ =, ,µ σ  (6)

 N e de ar e r, ,µ σ( )⋅ =
−∞∫
0

 (7)

Equation (6) is transformed into equation (8), using the integral calculations described in the Appendix.
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Using the central limit theorem and the tables of the Normal cdf, the FN(x, 0, 1), me/s ratio is calculated for 
the specifi c value of the second part of equation (7). If the NBIAS, which is equal to me, is known, s is straight-
forwardly calculated, otherwise the solution of the system of equations (7) and (8) provides the parameters me 
and s.

Cases 1 and 2
Without any further information about the frequency of overestimation or underestimation errors of a forecast-
ing tool, a 50% probability to overestimate the actual value and 50% probability to underestimate it, can be 
simply assumed. A further assumption is that the forecasting error follows a Normal pdf with zero mean and 
standard deviation s, as calculated by equation (8). In such a case, the system of equations (6) and (7) has the 
following solution representing Case 1:

Figure 1. Plot of the pdf considered for forecasting error when only NMAE is known
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 σ π µ= ⋅ ⋅ =
NMAE

2
2 0and e  (9)

Nevertheless, the forecasting errors are almost never symmetrical.27,28 Since the NMAE does not provide any 
information about asymmetry, the frequencies of overestimation and underestimation are essential, as in Case 
2. For different frequencies of overestimation and underestimation, different values of s and me can be calcu-
lated for the same NMAE, as Table II presents.

The pdf for lwe(t) is the result of the convolution of the pdfs for le(t) and we(t) and for continuous variables 
is given by equation (10):

 f lw t f l t x f w t dxlw t l t w te e ee e e( ) ( ) ( )
−∞

+∞

( ) = ( ) − ⋅ ( )∫[ ] [ ] [ ]  (10)

The convolution of two random variables following Normal pdf is, according to the probability theory, a 
Normal pdf N(x, m, s) with the following parameters:28

• Mean value, m, the summation of the mean values of the two random variables, m = m1 + m2.
• Standard deviation, s, calculated as s2 = s 2

1 + s 2
1 where s1 and s2 are the standard deviation of each random 

variable.

The mean value and the standard deviation for lwe(t) are provided by equations (11) and (12):

 µ µ µt t load t t InsCapt t( ) = ( )⋅ ( ) + ( )⋅( ) ( )le We  (11)

 σ σ σ2 2 2t t load t t InsCapt t( ) = ( )⋅ ( ) + ( )⋅( ) ( )[ ] [ ]le We  (12)

InsCap denotes wind power installed capacity; mle(t)(t) and mwe(t)(t) stands for the mean values and sle(t)(t) and 
swe(t)(t) represents the standard deviations for the forecasting errors of load and wind power, respectively.

Having calculated the parameters of the Normal pdf, the p and q percentiles for lwe(t) can be estimated using 
Normal cdf tables at the corresponding points kq and kp, respectively, as described by equations (13) and 
(14).

 perc q lw t t k t, e q( )[ ] = ( ) + ⋅ ( )µ σ  (13)

 perc p lw t t k t, e p( )[ ] = ( ) + ⋅ ( )µ σ  (14)

The wind power production cannot exceed the operation limits [0, InsCap]. This means that inequalities 
(15) and (16) should be valid, when calculating the required percentiles of the wpf error and the wind power 
forecasted value, WP(t).

 WP t perc q w t InsCap perc q w t InsCap WP t( ) + − ( )[ ] ≤ ⇔ − ( )[ ] ≤ − ( )1 1, ,e e  (15)

 WP t perc q w t perc q w t WP t( ) + − ( )[ ] ≥ ⇔ − ( )[ ] ≥ − ( )1 0 1, ,e e  (16)

Table II. Wind power underestimation and overestimation scenarios for Case 2

a (%) b (%) me (normalized bias) s

50 50 0 0.177
30 70 −0.082 0.156
35 65 −0.063 0.165
40 60 −0.043 0.171
45 55 −0.022 0.175
55 45 0.022 0.175
60 40 0.0433 0.171
65 35 0.063 0.165
70 30 0.082 0.156
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In order to overcome violation of equations (15) and (16), it is checked whether the probability of violating 
the limits of wind power production [0, InsCap], is higher than p% and (1–q)%, respectively. These values 
are chosen in accordance with the percentiles of lwe(t), equations (13) and (14), to ensure that the impact of 
such a violation is negligible.

If any probability is higher than these determined values, wpf error pdf is represented by a mixed discrete 
and continuous pdf, like the one depicted in Figure 2. The mathematical description of the modifi ed pdf that 
does not violate inequality (15) is provided by equation (17), and the discrete impulse is at the InsCap–WP(t) 
point. The modifi ed pdf, in order not to violate zero production,  inequality (16), has mathematical formulation 
similar to equation (17) and the discrete impulse is at the −WP(t) point. The probability of having we(t) values 
leading to violation of the limits should be zero. Therefore, the discrete impulse at the above discussed points 
is the one that sums up the rest of the points of the Normal pdf that should be curtailed, assuring that the 
integral of fwe(t)[we(t)] is equal to one.

f w t
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w t

w t w t
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e e
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In order to derive the required percentile points for lwe(t), discrete pdfs for both the updated wpf error pdf 
of Figure 2 and the load forecasting error pdf are derived, and these two discrete pdfs are convoluted. Then 
for the inequality that is expected to be violated, the required percentile for lwe(t) is taken by sorting the outputs 
of the discrete pdf points. For instance, if inequality (15) is violated, the p percentile of lwe(t) is found using 
the discrete pdf. The q percentile can be found using equation (13).

Case 3
In most cases, the wpf errors do not follow Normal distributions.27,28 Operators might know the occurrence of 
underestimation and overestimation errors, but they do not know how often extreme errors may occur. To cope 
with this, the pdf of the forecasting errors can be derived by grouping the er values to provide a discrete func-
tion, such as the one shown in Figure 3, and mathematically formulated by the Dirac function d, as in equation 
(18):

 f w t G w t Hwe t

k

m

( )
=

( ) = ⋅ ( )−[ ]∑[ ]e k e kδ
1

 (18)

where m is the number of impulses, Gk is the value of each bin and Hk the bin of wpf error. If we assume that 
le(t) follows a Normal pdf N(x, m1, s1), then lwe(t) is obtained by a convolution of a discrete pdf and a Gauss-
ian pdf. This convolution is obtained by equation (19), as explained in Miranda, Cerqueira and Monteiro:27

InsCap-WP(t)

1-FN(InsCap-WP(t), µwe(t)(t)*InsCap ,(swe(t)(t) *InsCap)2)

we(t)

Figure 2. Combined discrete and Normal pdf considered for Case 2 to avoid violation of wind power operating limits
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where sN is the standard deviation of the Normal pdf, load forecasting error in our case, and the mean value 
of the new pdf is given by mwk = mN + Hk, where mN is the mean value of the Gaussian pdf.

In such a case, estimating the required percentile requires the solution of equation (20):

 G F x G F x k px x1 2 1⋅ ( )+ ⋅ + ⋅( ) =σ %  (20)

where H1 = 0, H2 = k1 · s and G1 + G2 = 1 are all considered known. The number of adders in equation (20) 
is equal to m. The solution of such equation is not straightforward, and, as the number of adders increases 
more than two as in this example, the solution is getting more diffi cult. Thus, the user-defi ned confi dence 
interval for lwe(t) is calculated by discretizing the corresponding cdf and taking the corresponding percentile 
points.

Case 4
Normally, for certain wind power values, some types of forecasting errors are expected to be very rare, e.g. 
high overestimation error during a low wind speed period, or high underestimation error during a high wind 
speed period.29 Operators are much more concerned about wpf errors during high wind power periods, espe-
cially when the forecasted load is high. Thus, they would like information for the performance of the wpf tool 
taking into account the forecasted values.

To obtain such information, a classifi cation of the forecasting errors according to the forecasted value, e.g. 
high, medium or low wind, is performed. For each forecasted value range, the wpf error pdf is derived and 
convoluted with le(t) in order to derive the lwe(t) pdf, as well as the confi dence intervals for the specifi c range 
of forecasted wind power, similar to Case 3. The approach here is based on the off-line evaluation and catego-
rization of the results. Sometimes, the forecasting tool can provide pdf for the expected forecasting error 
according to the forecasted value using uncertainty estimations.

Economic Scheduling Functions
Equation (21) provides the minimum load that the units to be committed should meet, Ld2Units(t), at each 
time interval t:

 Ld Units t perc q lw t load t WP t2 ( ) = ( )[ ]+ ( ) − ( ), e  (21)
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The highest values of Flwe(t)[lwe(t)] correspond to the overestimation of wind power and the underestimation 
of load, the case the system might be inadequate. Therefore, q is selected high (e.g. 98.5%), so that the risk 
of insuffi cient committed capacity is less than 1–q (e.g. 1.5%).

The unit commitment (UC) problem is solved next, to determine the status of each of the unno thermal units, 
using the following formulation for each time interval:

 Min OC t Min u FC Pg t u u SUC tt i

i

[ ] [ ] ,( ) = ⋅ ( ) + ⋅ −( )⋅ ( )[ ]−
=

i,t i i,t i1 1
1

uunno

∑




 (22)

where OC(t) is the operating cost, FC[Pgi(t)] is the fuel cost (FC; quadratic cost function) of unit i depending 
on its production Pgi(t), ui,t is the unit status (0 if unit is off, 1 if unit is on). SUCi(t) denotes the start up cost 
of the ith unit that may be either constant, or a function of the time that the unit is not in operation, usually 
exponential.30 In the power system studied, SUCi(t) is considered constant because switching concerns mainly 
fast start-up units.

The minimization of equation (22) is subject to the following constraints, for each time step:

 u P Ld Units ti t

i

unno

i,
max

=
∑ ⋅ ≥ ( )

1

2  (23)

and

 P Pg t Pi i t
min max≤ ( ) ≤  (24)

where Pi
min and Pi

max are the technical minimum and maximum of unit i, respectively.
For the solution of the UC problem, the priority list is used. The units to be committed might impose con-

straints in the operation of the wind parks, i.e. underestimation of wind power and overestimation of the load 
means lower load to be dispatched. There might be the case that the sum of the technical minima of the units 
committed will be larger than the actual load to be served, as seen in equation (25):

 P load t WP t perc p lw tj

j IN t

min ,
∈ ( )
∑ = ( ) − ( ) + ( )[ ]e  (25)

where IN(t) is the set of the committed units and p is the value of the percentile, usually very small, e.g. 
p = 1.5%, meaning that the probability of violating the technical minima is less than p%. If inequality (25) is 
satisfi ed, then some wind power should be curtailed and the maximum acceptable wind power production, 
WP(t), is given by equation (26):

 WP t load t perc p lw t Pe j

j IN t

( ) = ( ) + ( )[ ]−
∈ ( )
∑, min

 (26)

The set points of the committed units are fi nally calculated from the ED problem. This is formulated as the 
minimization of the FC in equation (27), meeting the load as described in equation (28), without violating the 
technical limits of the units in equation (24):

 min [ ]
( )

FC Pg t
j IN t

j( )
∈
∑  (27)

 Pg load t WP tj

j IN t∈ ( )
∑ = ( ) − ( )  (28)

In order to solve the ED optimization problem, the sequential quadratic programming method is used. 
This is a generalization of the Newton’s optimization method, which uses a quadratic approach of 
the non-linear objective function of FCs and linear approximations for the technical constraints. This 
method guarantees that the solution is the global optimum in the feasible space, if the objective function 
is convex.31,32
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Study Case Network
General Description of the Power System
The case study network is the power system of Crete, which is the largest isolated system in Greece, with the 
highest annual increase in energy demand (8%). Various types of thermal units are in operation: steam turbines; 
diesel units; gas turbines; and one combined cycle plant. In the following, actual load and wind power time 
series for 2000 are used. The annual wind power penetration in energy is around 10%, whereas the instanta-
neous (hourly) wind power penetration has reached 39% in winter and early spring.33

The installed wind power capacity for the studied year is InsCap = 67.35 MW. Nowadays, the installed 
capacity is 105 MW, and the other 111.17 MW has been granted installation authorization from the Regulatory 
Authority of Energy in Greece.34

Technical Challenges Associated with Wind Power Forecasting
Wind power forecasting and estimation of its confi dence interval are important during low-load and high-load 
periods. During low-load periods, there is a danger of low-loading operation of the base units (steam turbines 
and combined cycle unit), and wind power is curtailed to avoid violation of the technical minima. During 
high-load periods, overestimation of wind power may lead to insuffi cient power to meet the demand.

Selected Days for the Study
Nine representative days are considered (Table III), in order to study the impact of various levels of wind 
power production and demand. These days combine low, medium and high demand with low (LW), medium 
(MW) and high wind power production (HW). The considered characterization and the frequency of the 
respecting conditions are also presented in the same table. For each day, the actual time series for both load 
and wind power production—24 h at hourly steps—are used as inputs. The load time series are classifi ed 
according to the daily demand as follows:

• High load (HL): above 6100 MWh, typically high touristic, summer days.
• Medium load (ML): between 5250 and 6100 MWh.
• Low load (LL): below 5250 MWh, typically during March, April, November and Sundays.

The wind power production time series are classifi ed as follows:

• HW: above 40 MW for 75–80% of the day.
• MW: production between 17 and 40 MW for 75–80% of the day.
• LW: all the other available 24 h time series.

Table III. Typical days used

Day Total daily 
demand (MWh)

Average wind power 
production (MW)

Characterization 
of day

Percentage within 
a year (%)

1 7269.8 55.2 HL–HW 11.75
2 7396.5 26.6 HL–MW  8.47
3 8006.1  7.5 HL–LW  9.56
4 5589.1 37.3 ML–HW  9.02
5 5421.1 24.1 ML–MW 11.75
6 5847.4  5.0 ML–LW 12.02
7 5242.7 40.7 LL–HW  4.64
8 4997.3 23.7 LL–MW 11.48
9 5197.4  1.3 LL–LW 21.31
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From initial runs of the methodology for many other days meeting the same criteria with the nine representa-
tive days of Table III, neither the sign of the cost difference nor the relative difference of wind power curtail-
ment among the assumed information levels of Table I has changed. That is why the results presented in this 
paper focus on the nine representative days of Table III.

Forecasting Tool Characteristics
In this paper, the NMAE of the MORE CARE load and wind power forecasting functions for 24 h ahead, as 
applied in Crete, are used7. These functions employ fuzzy-neural techniques for load forecasting and fuzzy-
neural network coupled with meteorological information for wind power forecasting. NMAE values for both 
forecasting tools are given in Table IV.

For load forecasting, the frequency of overestimation and underestimation errors is assumed equal, i.e. a = 
b = 50%. For wind power forecasting, Table II presents:

• The selected values for the occurrence of underestimation and overestimation errors.
• The calculated NBIAS and standard deviation corresponding to the selected values.

It should be noted that 97% confi dence interval was considered in Table II and the corresponding kq and kp 
parameters are equal to 2.17.

For the other two cases, the distribution of wpf errors has been considered either as it is for Case 3, or after 
grouping these errors according to the wind power output, Case 4. The forecasting errors have been obtained 
from the evaluation of the MORE CARE forecasting tool with actual data for 1 year.24

Results and Discussion
Overview
The presented results focus on the change in the operating cost and the expected wind power curtailment for 
each day of Table III according to the wpf error information available. The results show that the actual energy 
produced by the thermal units is almost the same in all studied cases, but two parameters differentiate costs:

• The number and the type of units committed to meet the same demand.
• The amount of wind power curtailment that modifi es the energy dispatched to the thermal units. The higher 

the wind power curtailment, the higher the increase in thermal production and cost.

Impact of Wind Power Forecasting Error Bias on Wind Power Curtailment
Assuming the same NMAE for all cases, the different values for wpf NBIAS in Table II are compared with 
respect to wind power curtailment and operating cost.

Figure 4 shows the absolute values of wind power curtailment during days with MW or HW, and LL or 
ML plotted for different values of frequency of wind power underestimation. Wind power curtailment is 
sensitive to:

• Variation of load, as shown by comparing days with the same level of wind power production but different 
load level, e.g. LL–HW with ML–HW day. For the same level of wind power underestimation frequency, 
wind power curtailment for LL–HW is higher than for ML–HW day.

Table IV. NMAE forecasting errors for load and wind power

Load forecasting (NMAEl)  7.07%
Wind power forecasting (NMAEw) 14.06%
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Figure 4. Absolute values of daily wind power curtailment versus wind power underestimation frequency 
for high and medium wind periods
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Figure 5. Cost comparison for high wind production for different wind power underestimation frequency

• Variation of wind power production, as shown by comparing days with similar loading but different wind 
power production, e.g. LL–HW and LL–MW days. For the same level of wind power underestimation fre-
quency, wind power curtailment for LL–HW is higher than for LL–MW day.

• Variation of frequency of wind power underestimation. For the same day type (e.g. ML–HW), wind power 
curtailment is increased as the wind power underestimation frequency increases.

Impact of Different Wind Power Forecasting Bias Values on Cost
The economic impact of different bias on the wpf error is studied in this section. Positive values of cost differ-
ence (Figures 5–7) denote rise, whereas negative values denote decrease in the operating cost compared with 
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Figure 7. Cost comparison for low wind production for different wind power underestimation frequency
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Figure 6. Cost comparison for medium wind production for different wind power underestimation frequency

the base case (Case 1). The results are grouped into high, medium and low wind periods, compared for each case 
individually with different demands and with different frequencies of wind power underestimation.

For HW days (Figure 5), for high-demand periods, the operating cost is decreased as the frequency of wind 
power underestimation increases because of reduced spinning reserve requirements. Cost reduction is equal 
for some neighboring values of the frequency of wind power underestimation (i.e. 30, 35 and 40 %) because 
of the commitment of the same units without wind power curtailment. For medium demand periods, when the 
frequency of wind power underestimation is below 50%, the operating cost is increased as the frequency of 
wind power underestimation increases, because of wind power curtailment (Figure 4). This justifi es the lower 
cost increase for 40% compared with 45%, and the marginal cost increase for 55 and 60% frequency of wind 
power underestimation. For all these cases, there is no difference in the committed units but wind power cur-
tailment increases thermal production and thus operating costs.

Similar conclusions hold for MW days (Figure 6) as for HW days (Figure 5).
In LW days (Figure 7), wind power is not curtailed, so the cost is affected only by the thermal operation. 

For ML days, operating-cost change exists only for wind power underestimation above 50%. No operating-cost 
change is noted for any value for LL days, as the low wind power production has minor impact on the opera-
tion of base or intermediate loading.



Wind Power Forecasting Error Bias and Economic Operation 327

Copyright © 2008 John Wiley & Sons, Ltd. Wind Energ 2009; 12:315–331
 DOI: 10.1002/we

Impact of Increased Information on Wind Power Forecasting Error
Following the comparison of the impact of different frequencies of wind power underestimation, which is 
equivalent to different NBIAS values when Normal pdf for wpf error is assumed, the impact of different 
information level on the performance of the same wpf tool is studied. The four cases of Table I are compared 
and the impacts on wind power curtailment and operating cost are studied.

Figure 8 shows the estimated wind power curtailment for the days and cases studied. The days and cases 
not depicted present zero wind power curtailment. Figure 8 shows that in all these cases, during high wind 
periods and ML or LL, there is signifi cant wind power curtailment. For similar daily wind power production, 
wind power curtailment is increased as load decreases, as shown by the comparison of LL–MW with ML–MW 
or LL–HW with ML–HW days.

Case 3 presents the highest wind power curtailment for all the days studied except for the LL–LW day for 
which Case 4 presents the highest value. The increased wind power curtailment in Case 3 is justifi ed by the 
distribution of wpf underestimation errors (Figure 3), which is not actually a Normal distribution around 
NBIAS, but presents—much more often than the corresponding Normal pdf assumed for Case 2—signifi cant 
values of wind power underestimation error. This fact justifi es the relatively small but existing wind power 
curtailment noted for an LL–LW day.

For HW periods, Case 4 leads to the lowest wind power curtailment compared with all the other cases, as 
LL–HW and ML–HW days show (Figure 8). For high wind periods, the probability to underestimate the 
forecasted wind power is signifi cantly lower. This fact is not taken into account when considering common 
wpf error distribution for all forecasted values, as Case 3 does, or even worse, when a Normal pdf is assumed 
like Cases 1 and 2. On the contrary, for low wind periods, it is more probable that the wind power is under-
estimated by the wpf tool, leading to increased uncertainty about the low limit of the expected load to be served 
by the committed thermal units. This is visible in Figure 8, when during low demand, even with low wind 
about 10 MWh wind power is curtailed, the highest among the cases studied.

For MW periods, wind power curtailment for Case 4 is higher, than the wind power curtailment for Cases 
1 and 2. This is explained as the possibility of rather increased wind power underestimation is higher compared 
with the hypothesis of Normal pdf. Nevertheless, such a probability is considerably lower than the one for 
Case 3, which presents higher wind power curtailment compared with Case 4. It is also notable that wind 
power curtailment for Case 4 is almost equal for the 2 days (ML–MW and ML–HW), showing the impact of 
the detailed analysis of the wpf error according to classifi ed prediction outputs.

The wind power curtailment analysis shows that the exact distribution of wpf errors independently of the 
forecasted value, Case 3, neither identifi es the high possibility of wind power curtailment during the low wind 

0

20

40

60

80

100

120

140

160

LL-LW LL-MW ML-MW LL-HW ML-HW

Day type

D
ai

ly
 w

in
d 

po
w

er
 c

ur
ta

ilm
en

t 
(M

W
h)

Case 1 (50-50) Case 2 (70-30)

Case 3 Case 4

Figure 8. Wind power curtailment for different types of days for the studied cases



328 A. G. Tsikalakis et al.

Copyright © 2008 John Wiley & Sons, Ltd. Wind Energ 2009; 12:315–331
 DOI: 10.1002/we

days, nor the lower possibility of wind power curtailment during medium or even higher wind periods. Cases 
1 and 2, assuming very low probability for high wind power underestimation value, failed to estimate the 
requirement for wind power curtailment during the periods suggested by Cases 3 and 4.

Cost Comparison

Comparing Cases 3 and 4 to Cases 1 and 2

The economic impact of increased information about the performance of the wpf tool is studied in this section. 
First, Case 1 is compared with Cases 3 and 4 (Figure 9), and then Case 2 (representing the performance of the 
forecasting tool) is compared with Cases 3 and 4 (Figure 10). In both fi gures, results are presented in ascend-
ing order of demand, grouped for each level of wind power forecast, namely, low, medium and high.

Comparing 50% and 70% frequency of wind power underestimation is equivalent to the comparison of Case 
1 and Case 2, respectively. In all cases, Case 2 presents equal or lower costs than Case 1. This cost reduction 
is low for low wind periods, but can reach up to 1.41% for an ML–MW day.

Low cost increase is noted only for an LL–LW day, when Case 3 is compared with Case 1 (Figure 9). As 
the operating units in both Cases 1 and 3 are the same, this is because of increased wind power curtailment. 
For all the other studied days, there is signifi cant cost decrease when comparing Case 3 with Case 1. This cost 
decrease is justifi ed by the fact that not only Case 3 presents the same average frequency of wind power 
underestimation with Case 2, higher than Case 1, but also presents more often higher wind power underestima-
tion values than the Normal pdf assumption. Thus, the spinning reserve requirements for Case 3 are signifi -
cantly reduced compared with Case 1.

If one compares Cases 2 and 3 (Figure 10), cost decrease exists in all days studied, with the exception 
of the LL–LW day justifi ed by the wind power curtailment. The wind power curtailment difference 
between Cases 2 and 3 is signifi cantly lower compared with the difference between Cases 1 and 3. Thus, 
the impact of wind power curtailment in the cost difference shown in Figure 10 compared with the one 
of Figure 9 is alleviated. The difference in spinning reserve requirements for Cases 2 and 3 is lower 
than between Cases 1 and 3, and consequently the cost reduction for Case 3 is signifi cantly lower in 
Figure 10 compared with Figure 9. Nevertheless, reduction of operating cost in Case 3 is still noted compared 
with Case 2, as high values of overestimating the forecasted wind power are less frequent than the ones 
foreseen using the Normal pdf.
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Figure 9. Cost comparison of Case 1 with Cases 3 and 4
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Figure 10. Cost comparison of Case 2 with Cases 3 and 4

The comparison between Case 2 and Case 4 (Figure 10) versus Case 1 and Case 4 (Figure 9) presents lower 
cost difference in both absolute and percentage values regarding low or medium wind power production. The 
lower spinning reserve requirements for Case 2 compared with Case 1 reduces the difference in spinning 
reserve requirements between Cases 2 and 4, and thus the operating costs difference.

Conclusion
In this paper, a method based on probabilistic analysis is presented that exploits any available 
information about load and wind power forecasting errors, to derive user-defi ned percentiles of the error 
in the estimation of the load to be distributed to the thermal units of an autonomous power system. 
These percentiles form confi dence intervals that can be used not only to calculate the spinning reserve 
requirements, but also to estimate the possibility of thermal units’ technical minima violation. The 
methodology developed here can be also applied for interconnected power systems, if constraints for the 
interconnection lines are considered.

The economic impact of various levels of information on the wpf error has been evaluated using actual data 
and an applied wpf tool, showing signifi cant changes in both operating costs and wind power curtailment. It 
has been also shown that for autonomous power systems, high underestimation errors may lead to increased 
wind power curtailment to avoid co-operation of thermal units with wind power.

The analysis has shown that, even by off-line classifi cation of the wpf errors according to the forecasted 
values, the operators may fi nd that overestimation of wind power production for low and medium wind periods 
is less important than for high wind periods. Therefore, information about the uncertainty of wpf output in the 
form of confi dence intervals for different forecasting levels can aid operators to estimate the expected range 
of wind power production and, consequently, the expected range of the load to be dispatched to the thermal 
units. The methodology can exploit any information on forecasting errors. Such information may be either a 
pdf of the expected forecasting error provided by the forecasting tool itself, or a pdf extracted from off-line 
evaluation of the forecasting tools.

Acknowledgements
The authors thank the ANEMOS project partners for their contributions, and the European Commision for 
partially funding this project.



330 A. G. Tsikalakis et al.

Copyright © 2008 John Wiley & Sons, Ltd. Wind Energ 2009; 12:315–331
 DOI: 10.1002/we

Appendix
In the following, the transformation of equation (6) into equation (8) is presented.
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By using equation (30) to (33), equation (29) is transformed into equation (8), that is
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